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Abstract 

Membranes, such as PVC, PTFE and ETFE, are widely used in spatial structures, and some of them exhibit 

viscoelastic-plastic property in long-term tension condition. Meanwhile, finite element method (FEM) has been a 

significant tool for structural analysis. This paper focuses on finite element formulation for viscoelastic-plastic 

modelling and its application for membrane creep analysis. On the basis of Schapery’s nonlinear viscoelastic 

modelling, Kennedy presented finite element formulation for creep analysis. This paper developed Kennedy’s 

work to consider viscoplastic component, which would not recover in given time. Revised finite element 

formulation for the viscoelastic-plastic modelling was presented, which requiring merely quantities at current 

time step and previous time step, rather than quantities at whole time scale. This formulation considered both 

viscoelastic creep deformation and viscoplastic creep deformation, and had been programmed in FORTRAN. 

Two examples were used to verify this formulation. One example was a rectangle specimen under uniaxial 

tension. In 10 hours creep time, total creep displacement was 1.79 mm in theoretical and 1.82 in numerical 

simulation. Simulation creep curve also embraced good agreement comparing with theoretical result during 

creep process. The other example was a triangle ETFE cushion. This cushion was tested in 12 hours for creep 

analysis. Inner pressure was 825 Pa. Creep properties at four stresses were offered and at other stresses were 

determined by linear interpolation. Creep displacements at the center points of the upper and lower foils were 

both measured by laser sensors. The maximum creep displacement was about 3.0 mm in 12 hours creep time. 

Numerical simulation was done and its result was compared with test data, which showing good agreement. 

Therefore, the revised finite element formulation is valid in membrane structures for creep analysis. 

 

Keywords: finite element formulation, viscoelastic-plastic modelling, creep analysis, membrane structures, 

numerical simulation. 

1. Introduction 

Membranes, such as PVC, PTFE and ETFE, are novel structural materials being used in spatial buildings. As 

kinds of composite materials or polymers, these materials exhibit viscoelastic or viscoelastic-plastic property in 

their serving life, which might cause stress relaxation or creep deformation. Meanwhile, during recent decades, 

finite element method (FEM) has been successfully applied in structural analysis and design. It is a significant 

tool for researchers and engineers to analyze complex structural response under various loading condition, of 

course, including creep behavior of membranes. 

On the basis of Schapery’s nonlinear constitutive equation in single integral form 
[1,2]

, several finite element 

formulations have been proposed. Kennedy presented finite element analysis for viscoelastic response of 

laminated composites, for both shell element and three-dimensional element 
[3,4]

. Zocher developed a thermo 

viscoelastic finite element formulation for linear uncoupled thermo viscoelastic stress analysis and matrix-

cracked laminates 
[5]

. To discretize the integral operators, Chazal proposed a mathematical approach for the 

solution of linear, non-aging viscoelastic materials undergoing mechanical deformation 
[6]

. Moreover, Chung 

developed viscoelastic/rate-sensitive-plastic constitutive law for fiber reinforced composites and applied it in 

both loading process and creep analysis 
[7,8]

. 

However, while membranes in structure exhibit viscoelastic and viscoplastic behavior in long-term tension 

condition 
[9,10]

, prior researches focused merely on nonlinear viscoelastic constitutive equation of composites, in 
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which viscoelastic and viscoplastic creep deformations have not been distinguished. Therefore, this paper revised 

finite element formulation for creep analysis of membrane, and developed the formulation to consider 

viscoplastic component. 

 

2. Constitutive equations 

Schapery’s nonlinear constitutive modelling for creep analysis in uniaxial loading condition could be expressed 

as Eq. (1). 
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The reduced time in Eq. (1) is defined by Eq. (2). 
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where ε(t) is the strain being dependent on time, σ(t) is the stress, g0(t), g1(t), g2(τ) and a are nonlinear 

coefficients relating to stress, temperature and strain rate, D0 is initial compliance, Dc is transient compliance, 

Ɵ(t) is the thermal strain, which is not discussed in this paper. 

To distinguish viscoelastic and viscoplastic creep deformation on the basis of creep and recovery tests, 

viscoelastic-plastic modelling is adopted to represent transient compliance Dc expression, as shown in Eq. (3). 
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where Dr and λr are creep coefficients in viscoelastic component which would recover in given time, Df and k are 

creep coefficients in viscoplastic component. 

Then, substituting Eq. (3) into Eq. (1), total strain εi(t) in time step tn could be rewritten in hyper matrix form, as 

shown in Eq. (4). 
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As proposed by Kennedy, Eq. (5-b) is given in Eq. (6). This equation only requires quantities at current time step 

tn and previous time step tn-1, rather than quantities at the whole time scale, which save computational memory in 

numerical simulation. 
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When it turns to the viscoplastic component (5-c), finite element formulation is conducted as following. Similar 

as Eq. (6), this component is given in Eq. (7), requiring quantities at current time step tn and previous time step 

tn-1. In order to simplify the formulation, g1ijkl, g2ijkl are assumed not changing with time, namely g1ijkl(tn)= g1ijkl(tn-

1), g2ijkl(tn)= g2ijkl(tn-1). Also, ψ(tn) is assumed equaling to ψ(tn-1)+ ψ(Δt). 
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Hence, by substituting Eq. (6), Eq. (7) into Eq. (4), total strain for the viscoelastic-plastic modelling is rewritten 

in Eq. (8), which could be conveniently used in finite element analysis. 
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3. Finite element analysis 

Basing on the principle of virtual work, incremental equilibrium equations for finite element analysis are shown 

in Eq. (9). 
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Then, Eq. (9) could be rewritten in Eq. (10). 
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According to finite element formulation for the viscoelastic-plastic modelling Eq. (8), stress at current time step 

tn have a relation with stress at previous time step tn-1, strain at current time step tn, and quantities at previous 

time step tn-1. It could be rearranged as form Eq. (11). 
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To simplify the formulation, we assume 
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In this way, finite element formulation for the viscoelastic-plastic modelling is written in Eq. (13). 
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4. Numerical examples 

The revised finite element formulation for viscoelastic-plastic modelling is programmed in FORTRAN and is 

verified by the following two examples. One is for uniaxial creep analysis and compares with theoretical analysis. 

The other one is for ETFE cushion creep analysis and compares with test results. 

4.1. Example for uniaxial creep analysis 

This example is a rectangle specimen under uniaxial tension. The specimen is 100 mm in length and 20 mm in 

width. Its thickness is 1 mm. The specimen is uniaxial tensioned in 0.04N, and kept constant 0.002 MPa in the 

creep test. Twenty triangle membrane elements are used to divide this specimen. One end is fixed and the other 

end is forced, as illustrated in Fig. 1. Total creep time in this example is 36000 seconds (10 hours). 

Viscoelastic-plastic modelling adopted for this specimen is shown in Eq. (14). 

 1/

0 1(1 )
t k

fD D D e D t


      (14) 

where, D0=2.0 MPa
-1

, D1=5.0 MPa
-1

, τ1=10
4 
s, Df=0.5 MPa

-1
, k=0.2. 

Initial displacement in loading process is 0.4 mm, which contains only elastic deformation. The creep 

displacement in theoretical analysis is 1.79 mm, in which the Poisson’s ratio is not considered for the small creep 

deformation. In numerical simulation, creep displacement is 1.82 mm. Creep displacement of the loading end of 

specimen is illustrated in Fig. 2. As shown, simulation result has a good agreement comparing with theoretical 

one. 
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Figure 1. Modelling for uniaxial creep example            Figure 2. Comparison of theoretical and simulation results 

4.2. Example for cushion creep analysis 

This example is a double-layer ETFE cushion with 4.0 m in each edge. Creep test of this cushion was performed. 

The specimen was regular triangle designed by shape finding analysis, in which inner pressure was 450 Pa and 

stress was 3.56 MPa. The cushion was cut and welded to form its curve shape as form finding result. In the creep 

test, creep displacement at the center points (T1 and T5) of the upper and lower foils were both measured by 

laser sensors. Inner pressure during test was 825 Pa. Total creep time in this example is 43200 seconds (12 

hours). 

The viscoelastic-plastic modelling adopted in this example is shown in Eq. (15), and creep coefficients are listed 

in Table 1, which were obtained by uniaxial creep tests of ETFE foil using different tensile stress σ. 
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As listed in Table 1, creep property of ETFE foil has a relation with stress. Hence, creep coefficients in each 

element are all determined according to its stress after loading process. By means of Table 1, creep coefficients 

are calculated by linear interpolation according to stress. 

Table 1 Creep coefficients of ETFE foil 

σ D0 D1 D2 D3 D4 D5 Df k 

3 MPa 1.228E-3 2.770E-6 4.597E-6 3.145E-5 4.869E-5 4.757E-5 1.635E-7 0.53887 

6 MPa 1.296E-3 8.311E-6 5.617E-5 1.466E-4 1.937E-4 1.110E-4 9.752E-7 0.54189 

9 MPa 1.378E-3 1.334E-5 1.349E-4 3.667E-4 3.970E-4 2.419E-4 5.319E-7 0.69900 

12 MPa 1.431E-3 2.380E-5 2.303E-4 4.588E-4 3.711E-4 4.251E-4 1.554E-5 0.43873 
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Figure 3. Stress distribution in triangle ETFE 

cushion at the beginning of creep test 

Figure 4. Creep displacement of triangle cushion 
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Stress distribution of this triangle cushion is numerically analyzed and shown in Fig. 3. Creep coefficients for 

creep analysis of cushion are given by using Table 1 and the stress distribution in Fig 3. 

As recorded by laser sensors in creep test, creep displacements at the center points of this cushion are shown in 

Fig. 4. In the 12 hours creep time, total creep displacement is about 3.0 mm. Numerical simulation are also 

performed and illustrated in Fig. 4, the results of which have good agreement comparing with test data. 

 

5. Conclusions 

The revised finite element formulation for creep analysis was presented in the paper and examined by two 

numerical examples. 

Total strain equation for the viscoelastic-plastic modelling was proposed firstly. While the nonlinear viscoelastic 

component was based on Kennedy’s work, viscoplastic part was suggested in this paper. This equation required 

quantities at previous time step, rather than those at whole time scale, to simulate creep strain. Finite element 

formulation for this viscoelastic-plastic modelling was presented. 

The formulation was programmed in FORTRAN and verified by two examples. One example was to simulate a 

rectangle specimen in uniaxial creep in 10 hours. Simulation result showed good agreement comparing with 

theoretical analysis. The other one was to simulate the creep test of a triangle ETFE cushion in 12 hours. Creep 

displacements from numerical simulation have good agreement with those from creep test. 
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